camera calibration for distorted images with chess board samples reads distorted images, calculates the calibration and write undistorted images
original code is from opencv tutorials:
https://github.com/opencv/opencv/blob/master/samples/python/calibrate.py
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_pose/py_pose.html
read more about the functions here:
https://docs.opencv2.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
a reference calibration plane for printing can be copied from here:
# to run in google colab
import sys
if "google.colab" in sys.modules:
import os
import requests
os.makedirs("images", exist_ok=True)
for i in range(1, 18):
im_url = f"https://github.com/YoniChechik/AI_is_Math/raw/master/c_07_camera_calibration/images/{i}.jpeg"
response = requests.get(im_url)
if response.status_code == 200:
with open(f"images/{i}.jpeg", "wb") as file:
file.write(response.content)
else:
raise Exception(f"Failed to download the image. Status code: {response.status_code}")
from glob import glob
import cv2
import matplotlib.pyplot as plt
import numpy as np
square_size = 2.88
img_mask = "./images/*.jpeg"
pattern_size = (9, 6)
figsize = (20, 20)
img_names = glob(img_mask)
num_images = len(img_names)
pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
pattern_points *= square_size
obj_points = []
img_points = []
h, w = cv2.imread(img_names[0]).shape[:2]
plt.figure(figsize=figsize)
for i, fn in enumerate(img_names):
print("processing %s... " % fn)
imgBGR = cv2.imread(fn)
if imgBGR is None:
print("Failed to load", fn)
continue
imgRGB = cv2.cvtColor(imgBGR, cv2.COLOR_BGR2RGB)
img = cv2.cvtColor(imgRGB, cv2.COLOR_RGB2GRAY)
assert w == img.shape[1] and h == img.shape[0], f"size: {img.shape[1]} x {img.shape[0]}"
found, corners = cv2.findChessboardCorners(img, pattern_size)
# if you want to better improve the accuracy... cv2.findChessboardCorners already uses cv2.cornerSubPix
# if found:
# term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1)
# cv2.cornerSubPix(img, corners, (5, 5), (-1, -1), term)
if not found:
print("chessboard not found")
continue
if i < 12:
img_w_corners = cv2.drawChessboardCorners(imgRGB, pattern_size, corners, found)
plt.subplot(4, 3, i + 1)
plt.imshow(img_w_corners)
print(f"{fn}... OK")
img_points.append(corners.reshape(-1, 2))
obj_points.append(pattern_points)
plt.show()
Step 2: get camera intrinsics + distortion coeffs
also get extrinsic rotation and translation vectors per image. Rotation vector is another representation for a full R matrix more on it here: https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
# calculate camera distortion
rms, camera_matrix, dist_coefs, _rvecs, _tvecs = cv2.calibrateCamera(obj_points, img_points, (w, h), None, None)
print("\nRMS:", rms)
print("camera matrix:\n", camera_matrix)
print("distortion coefficients: ", dist_coefs.ravel())
# undistort the image with the calibration
plt.figure(figsize=figsize)
for i, fn in enumerate(img_names):
imgBGR = cv2.imread(fn)
imgRGB = cv2.cvtColor(imgBGR, cv2.COLOR_BGR2RGB)
dst = cv2.undistort(imgRGB, camera_matrix, dist_coefs)
if i < 12:
plt.subplot(4, 3, i + 1)
plt.imshow(dst)
plt.show()
print("Done")
objectPoints = (
3
* square_size
* np.array(
[
[0, 0, 0],
[0, 1, 0],
[1, 1, 0],
[1, 0, 0],
[0, 0, -1],
[0, 1, -1],
[1, 1, -1],
[1, 0, -1],
]
)
)
def draw(img, imgpts):
imgpts = np.int32(imgpts).reshape(-1, 2)
# draw ground floor in green
img = cv2.drawContours(img, [imgpts[:4]], -1, (0, 255, 0), -1)
# draw pillars in blue color
for i, j in zip(range(4), range(4, 8)):
img = cv2.line(img, tuple(imgpts[i]), tuple(imgpts[j]), (255), 3)
# draw top layer in red color
img = cv2.drawContours(img, [imgpts[4:]], -1, (0, 0, 255), 3)
return img
plt.figure(figsize=figsize)
for i, fn in enumerate(img_names):
imgBGR = cv2.imread(fn)
imgRGB = cv2.cvtColor(imgBGR, cv2.COLOR_BGR2RGB)
imgpts = cv2.projectPoints(objectPoints, _rvecs[i], _tvecs[i], camera_matrix, dist_coefs)[0]
drawn_image = draw(imgRGB, imgpts)
if i < 12:
plt.subplot(4, 3, i + 1)
plt.imshow(drawn_image)
plt.show()