Camera calibration

Open In Colab

camera calibration for distorted images with chess board samples reads distorted images, calculates the calibration and write undistorted images

original code is from opencv tutorials:

https://github.com/opencv/opencv/blob/master/samples/python/calibrate.py

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_pose/py_pose.html

read more about the functions here:

https://docs.opencv2.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

a reference calibration plane for printing can be copied from here:

https://stackoverflow.com/questions/25233198/opencv-2-4-9-for-python-cannot-find-chessboard-camera-calibration-tutorial

In [1]:
# to run in google colab
import sys

if "google.colab" in sys.modules:
    import os

    import requests

    os.makedirs("images", exist_ok=True)
    for i in range(1, 18):
        im_url = f"https://github.com/YoniChechik/AI_is_Math/raw/master/c_07_camera_calibration/images/{i}.jpeg"

        response = requests.get(im_url)
        if response.status_code == 200:
            with open(f"images/{i}.jpeg", "wb") as file:
                file.write(response.content)
        else:
            raise Exception(f"Failed to download the image. Status code: {response.status_code}")
In [2]:
from glob import glob

import cv2
import matplotlib.pyplot as plt
import numpy as np
In [3]:
square_size = 2.88
img_mask = "./images/*.jpeg"
pattern_size = (9, 6)

figsize = (20, 20)
In [4]:
img_names = glob(img_mask)
num_images = len(img_names)

pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
pattern_points *= square_size

obj_points = []
img_points = []
h, w = cv2.imread(img_names[0]).shape[:2]

Step 1: find all corners in calibration plane

In [5]:
plt.figure(figsize=figsize)

for i, fn in enumerate(img_names):
    print("processing %s... " % fn)
    imgBGR = cv2.imread(fn)

    if imgBGR is None:
        print("Failed to load", fn)
        continue

    imgRGB = cv2.cvtColor(imgBGR, cv2.COLOR_BGR2RGB)
    img = cv2.cvtColor(imgRGB, cv2.COLOR_RGB2GRAY)

    assert w == img.shape[1] and h == img.shape[0], f"size: {img.shape[1]} x {img.shape[0]}"
    found, corners = cv2.findChessboardCorners(img, pattern_size)
    # if you want to better improve the accuracy... cv2.findChessboardCorners already uses cv2.cornerSubPix
    # if found:
    #     term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1)
    #     cv2.cornerSubPix(img, corners, (5, 5), (-1, -1), term)

    if not found:
        print("chessboard not found")
        continue

    if i < 12:
        img_w_corners = cv2.drawChessboardCorners(imgRGB, pattern_size, corners, found)
        plt.subplot(4, 3, i + 1)
        plt.imshow(img_w_corners)

    print(f"{fn}... OK")
    img_points.append(corners.reshape(-1, 2))
    obj_points.append(pattern_points)


plt.show()
processing ./images\1.jpeg... 
./images\1.jpeg... OK
processing ./images\10.jpeg... 
./images\10.jpeg... OK
processing ./images\11.jpeg... 
./images\11.jpeg... OK
processing ./images\12.jpeg... 
./images\12.jpeg... OK
processing ./images\13.jpeg... 
./images\13.jpeg... OK
processing ./images\14.jpeg... 
./images\14.jpeg... OK
processing ./images\15.jpeg... 
./images\15.jpeg... OK
processing ./images\16.jpeg... 
./images\16.jpeg... OK
processing ./images\17.jpeg... 
./images\17.jpeg... OK
processing ./images\2.jpeg... 
./images\2.jpeg... OK
processing ./images\3.jpeg... 
./images\3.jpeg... OK
processing ./images\4.jpeg... 
./images\4.jpeg... OK
processing ./images\5.jpeg... 
./images\5.jpeg... OK
processing ./images\6.jpeg... 
./images\6.jpeg... OK
processing ./images\7.jpeg... 
./images\7.jpeg... OK
processing ./images\8.jpeg... 
./images\8.jpeg... OK
processing ./images\9.jpeg... 
./images\9.jpeg... OK
No description has been provided for this image

Step 2: get camera intrinsics + distortion coeffs

also get extrinsic rotation and translation vectors per image. Rotation vector is another representation for a full R matrix more on it here: https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula

In [6]:
# calculate camera distortion
rms, camera_matrix, dist_coefs, _rvecs, _tvecs = cv2.calibrateCamera(obj_points, img_points, (w, h), None, None)

print("\nRMS:", rms)
print("camera matrix:\n", camera_matrix)
print("distortion coefficients: ", dist_coefs.ravel())
RMS: 0.9718342398607388
camera matrix:
 [[1.23561414e+03 0.00000000e+00 7.90643153e+02]
 [0.00000000e+00 1.23785610e+03 6.16485473e+02]
 [0.00000000e+00 0.00000000e+00 1.00000000e+00]]
distortion coefficients:  [ 2.16360929e-01 -8.82441853e-01  1.24903590e-04  1.39278847e-03
  1.09503069e+00]

Build undistorted images

In [7]:
# undistort the image with the calibration
plt.figure(figsize=figsize)
for i, fn in enumerate(img_names):
    imgBGR = cv2.imread(fn)
    imgRGB = cv2.cvtColor(imgBGR, cv2.COLOR_BGR2RGB)

    dst = cv2.undistort(imgRGB, camera_matrix, dist_coefs)

    if i < 12:
        plt.subplot(4, 3, i + 1)
        plt.imshow(dst)

plt.show()
print("Done")
No description has been provided for this image
Done

Example for full projection from 3D to 2D of a cube

In [8]:
objectPoints = (
    3
    * square_size
    * np.array(
        [
            [0, 0, 0],
            [0, 1, 0],
            [1, 1, 0],
            [1, 0, 0],
            [0, 0, -1],
            [0, 1, -1],
            [1, 1, -1],
            [1, 0, -1],
        ]
    )
)


def draw(img, imgpts):
    imgpts = np.int32(imgpts).reshape(-1, 2)

    # draw ground floor in green
    img = cv2.drawContours(img, [imgpts[:4]], -1, (0, 255, 0), -1)

    # draw pillars in blue color
    for i, j in zip(range(4), range(4, 8)):
        img = cv2.line(img, tuple(imgpts[i]), tuple(imgpts[j]), (255), 3)

    # draw top layer in red color
    img = cv2.drawContours(img, [imgpts[4:]], -1, (0, 0, 255), 3)

    return img


plt.figure(figsize=figsize)
for i, fn in enumerate(img_names):
    imgBGR = cv2.imread(fn)
    imgRGB = cv2.cvtColor(imgBGR, cv2.COLOR_BGR2RGB)

    imgpts = cv2.projectPoints(objectPoints, _rvecs[i], _tvecs[i], camera_matrix, dist_coefs)[0]
    drawn_image = draw(imgRGB, imgpts)

    if i < 12:
        plt.subplot(4, 3, i + 1)
        plt.imshow(drawn_image)

plt.show()
No description has been provided for this image