In [1]:
import torch
import torchvision
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.optim as optim
torch.manual_seed(0)
Let's look at the data¶
In [2]:
dataset_save_path = "../data/"
# download the train dataset
dataset_train = torchvision.datasets.MNIST(dataset_save_path, train=True, download=True)
In [3]:
print(dataset_train.data.shape)
print(dataset_train.data.max())
print(dataset_train.targets.shape)
print(dataset_train.targets.max())
In [4]:
figure = plt.figure()
num_of_images = 60
for index in range(num_of_images):
plt.subplot(6, 10, index + 1)
plt.axis("off")
plt.imshow(dataset_train.data[index, :, :], cmap="gray")
plt.title(int(dataset_train.targets[index]))
plt.tight_layout()
Get the mean and std of the data¶
In [5]:
dataset_01 = dataset_train.data.double() / 255
print(dataset_01.max())
print(torch.mean(dataset_01))
print(torch.std(dataset_01))
Prepare the data¶
In [6]:
# function that acts on the data as a pre-processing stage
mnist_transform = torchvision.transforms.Compose(
[
torchvision.transforms.ToTensor(), # transforms the dataset to tensor from PIL/numpy + scale: [0,255] -> [0,1]
torchvision.transforms.Normalize(0.1307, 0.3081), # mean & std of train set
]
)
# download the train and test dataset
# Note: this transformation `mnist_transform` will be activated only upon dataloader call
dataset_train = torchvision.datasets.MNIST(dataset_save_path, train=True, download=True, transform=mnist_transform)
dataset_test = torchvision.datasets.MNIST(dataset_save_path, train=False, download=True, transform=mnist_transform)
DataLoader
: Combines a dataset and a sampler, and provides an iterable over the given dataset.
In [7]:
batch_size_train = 64
batch_size_test = 1000 # the test batch size is larger because this is less compute intensive
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=batch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=batch_size_test, shuffle=True)
# shuffle: set to True to have the data reshuffled at every epoch
Build a NN¶
In [8]:
input_size = 28 * 28
hidden_sizes = [128, 64]
output_size = 10 # Num classes
model = nn.Sequential(
nn.Flatten(),
nn.Linear(input_size, hidden_sizes[0]),
nn.ReLU(),
nn.Linear(hidden_sizes[0], hidden_sizes[1]),
nn.ReLU(),
nn.Linear(hidden_sizes[1], output_size),
nn.Softmax(dim=1),
)
print(model)
Get the device on which we will work¶
In [9]:
print(f" is cuda available: {torch.cuda.is_available()}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
We need to move the weights and data to the GPU...
In [10]:
model.to(device)
Out[10]:
Evaluate your model¶
model.eval()
will notify all your layers that you are in eval mode, that way, batchnorm or dropout layers will work in eval mode instead of training mode.torch.no_grad()
impacts the autograd engine and deactivate it. It will reduce memory usage and speed up computations but you won’t be able to backprop (which you don’t want in an eval script).
In [11]:
def test(model, test_loader):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for images, labels in test_loader:
# Move batch to device
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
predicted = torch.argmax(outputs.data, dim=1)
total += labels.size(0)
correct += int((predicted == labels).sum())
print(f"Accuracy of the network on {dataset_test.data.shape[0]} test images: {100 * correct / total}%")
test(model, test_loader)
Build the train loop¶
In [12]:
optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()
epochs = 3
for e in range(epochs):
model.train()
epoch_sum_loss = 0
# Run mini-batch
for images, labels in train_loader:
# Move batch to davice
images = images.to(device)
labels = labels.to(device)
# Training pass
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
# This is where the model learns by backpropagating
loss.backward()
# And optimizes its weights here
optimizer.step()
epoch_sum_loss += loss
print(f"Epoch {e} - Training epoch mean loss: {epoch_sum_loss/len(train_loader)}")
Test the final model¶
In [13]:
test(model, test_loader)
In [14]:
images, labels = next(iter(test_loader))
outputs = model(images.to(device))
predicted = torch.argmax(outputs, dim=1)
figure = plt.figure()
num_of_images = 20
for index in range(num_of_images):
plt.subplot(4, 5, index + 1)
plt.axis("off")
plt.imshow(images[index, 0, :, :], cmap="gray")
prd = int(predicted[index])
gt = int(labels[index])
plt.title(f"pred:{prd}\n gt:{gt}" + "\nwrong!" * (prd != gt))
plt.tight_layout()